“…The general methods to solve this ill-posed problem are iterative algorithms (such as the Algebraic Reconstruction Technique and the Multiplicative Algebraic Reconstruction Technique) with some prior information and constraints [e.g., Andreeva, 1990;Hobiger et al, 2008;Raymund et al, 1990;Wen et al, 2012], use of basis functions (such as spherical harmonics-generated basis functions and empirical orthonormal basis functions) [e.g., Fremouw et al, 1992;Garcia and Crespon, 2008;Mitchell and Spencer, 2003;Na and Lee, 1990], singular value decomposition algorithms [Hajj et al, 1994], multisource data fusion algorithms [e. g., Alizadeh et al, 2011;Dettmering et al, 2011;Li et al, 2012;Yue et al, 2012], constrained least squares algorithms [Seemala et al, 2014], Bayesian approaches [Markkanen et al, 1995;Norberg et al, 2015Norberg et al, , 2016, artificial neutral networks methods [Ma et al, 2005], data assimilation approaches (three-dimensional variational, four-dimensional variational, and Kalman filter) [e.g., Bust et al, 2004;Hajj et al, 2004;Pi et al, 2003;Scherliess et al, 2004;Schunk et al, 2004;Wang et al, 2004], and regularization methods [Fehmers et al, 1998;Lee et al, 2007;Nygrén et al, 1997]. However, it needs to be noted that ill-posedness is still a crucial problem in ionospheric tomography algorithm [Yao et al, 2015].…”