2011
DOI: 10.5194/hessd-8-11075-2011
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Bayesian uncertainty assessment of flood predictions in ungauged urban basins for conceptual rainfall-runoff models

Abstract: Urbanization and the resulting land-use change strongly affect the water cycle and runoff-processes in watersheds. Unfortunately, small urban watersheds, which are most affected by urban sprawl, are mostly ungauged. This makes it intrinsically difficult to assess the consequences of urbanization. Most of all, it is unclear how to reliably assess the predictive uncertainty given the structural deficits of the applied models. In this study, we therefore investigate the uncertainty of flood predictions in ungauge… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
30
0
2

Year Published

2015
2015
2022
2022

Publication Types

Select...
8

Relationship

1
7

Authors

Journals

citations
Cited by 15 publications
(32 citation statements)
references
References 81 publications
0
30
0
2
Order By: Relevance
“…Oleh sebab itu diperlukan model sederhana yang mampu memrediksi hasil air secara akurat dengan data yang sederhana dan mudah diperoleh. Prediksi tersebut dapat dilakukan dengan pemodelan, baik dengan menyusun model baru maupun mengaplikasikan model yang sudah tersedia disertai validasi sesuai dengan kondisi DAS yang spesifik (Sikorska et al, 2012). Model merupakan penyederhanaan dari realitas yang kompleks (Voinov, 2008).…”
Section: Pendahuluanunclassified
“…Oleh sebab itu diperlukan model sederhana yang mampu memrediksi hasil air secara akurat dengan data yang sederhana dan mudah diperoleh. Prediksi tersebut dapat dilakukan dengan pemodelan, baik dengan menyusun model baru maupun mengaplikasikan model yang sudah tersedia disertai validasi sesuai dengan kondisi DAS yang spesifik (Sikorska et al, 2012). Model merupakan penyederhanaan dari realitas yang kompleks (Voinov, 2008).…”
Section: Pendahuluanunclassified
“…Instead, parametric uncertainty appears to be the only type of model uncertainty that has been analyzed (e.g., Freni et al, 2009). Few recent exceptions have been the investigations of Sun and BertrandKrajewski (2013), Sikorska et al (2012), and Del Giudice et al (2013). While the first study estimated rainfall errors but assumed no structural deficits, the others implicitly considered the combined impact of structural and input inadequacies by using autoregressive output error models.…”
Section: Introductionmentioning
confidence: 96%
“…First, these error sources can be the dominant cause of predictive uncertainty (Renard et al, 2011). Second, neglecting structural and input errors usually lead to autocorrelated residuals and therefore biased parameter estimates, as well as underestimation of uncertainty (Neumann and Gujer, 2008;Sikorska et al, 2012). Third, we are interested in understanding how much a better model structure can improve the precision and accuracy of our predictions.…”
Section: Introductionmentioning
confidence: 97%
See 1 more Smart Citation
“…On the other hand, insight into moisture profiles was attempted from surface measurements, and given in: (Arya et al, 1983;Camillo and Schmugge, 1983;Entekhabi et al, 1994;Jackson, 1980). Independent of the applied technique, the gained knowledge on the soil wetness status is indispensable for catchment runoff modelling, that usually requires complex models with spatially distributed parameters, having prescribed uncertainty ranges (Marcinkowski et al, 2013;Sikorska et al, 2012). Among those parameters, the soil water content is one of the most important to trigger surface runoff (Brandyk and Majewski, 2013;Chormański, 2012;Deardorff, 1977).…”
Section: Introductionmentioning
confidence: 99%