Brain-derived neurotrophic factor (BDNF) mediates energy metabolism and feeding behavior. As a neurotrophin, BDNF promotes neuronal differentiation, survival during early development, adult neurogenesis, and neural plasticity; thus, there is the potential that BDNF could modify circuits important to eating behavior and energy expenditure. The possibility that "faulty" circuits could be remodeled by BDNF is an exciting concept for new therapies for obesity and eating disorders. In the hypothalamus, BDNF and its receptor, tropomyosin-related kinase B (TrkB), are extensively expressed in areas associated with feeding and metabolism. Hypothalamic BDNF and TrkB appear to inhibit food intake and increase energy expenditure, leading to negative energy balance. In the hippocampus, the involvement of BDNF in neural plasticity and neurogenesis is important to learning and memory, but less is known about how BDNF participates in energy homeostasis. We review current research about BDNF in specific brain locations related to energy balance, environmental, and behavioral influences on BDNF expression and the possibility that BDNF may influence energy homeostasis via its role in neurogenesis and neural plasticity. food intake; body weight; ventromedial hypothalamus; paraventricular nucleus; brain-derived neurotrophic factor BRAIN-DERIVED NEUROTROPHIC factor (BDNF) is a member of the neurotrophin family of growth factors (151), along with nerve growth factor (152), and neurotrophin (NT) 3 (67, 163), NT 4/5 (28), and NT 6 (88). Neurotrophins are synthesized as 32-35-kDa pro-isoforms, which are later cleaved to mature forms that dimerize after translation and then act as receptor ligands (136). Whereas the precursor forms of other neurotrophins are constitutively secreted, the 32-kDa pro-BDNF is packaged into vesicles of a regulated pathway and is secreted in an activitydependent manner (87). Pro-BDNF may be secreted as is (48), cleaved by the extracellular protease plasmin (202), or interact with the pan-neurotrophin receptor p75 NTR and other receptors that cause an independent biological effect (244). Alternatively, pro-BDNF is processed to the mature form intracellularly by furin or proconvertases, where it forms C-terminal dimers (212, 226).Mature BDNF is considered the biologically active form, which has a high affinity for the tropomyosin-related kinase B (TrkB) receptor (130). Both BDNF and TrkB are present in presynaptic axon terminals and postsynaptic dendritic compartments of neurons, and they are capable of bidirectional release and activity [for review, see Tyler et al. (259)]. Typical of the neurotrophic factors, BDNF stimulates the development and differentiation of new neurons (3, 131) and promotes long-term potentiation (LTP) (139,140,205), and neuron survival (97,105,116). BDNF is abundantly expressed throughout the developing and mature CNS and in many peripheral tissues, including muscle, liver, and adipose (42,159,182,261). Regional differences between BDNF mRNA levels and protein concentrations in the CNS a...