Nonapeptide hormones of the vasopressin/oxytocin family regulate social behaviours. In mammals and birds, variation in behaviour also is linked to expression patterns of the V1a-type receptor and the oxytocin/mesotocin receptor in the brain. Genome duplications, however, expand the diversity of nonapeptide receptors in actinopterygian fishes, and two distinct V1a-type receptors (v1a1 and v1a2) for vasotocin, as well as at least two V2-type receptors (v2a and v2b), have been identified in these taxa. The present study investigates how aggression connected to social status relates to the abundance patterns of gene transcripts encoding four vasotocin receptors, an isotocin receptor (itr), pro-vasotocin (proVT) and pro-isotocin (proIT) in the brain of the pupfish Cyprinodon nevadensis amargosae. Sexually-mature pupfish were maintained in mixed-sex social groups and assessed for individual variation in aggressive behaviours. Males in these groups behaved more aggressively than females, and larger fish exhibited higher aggression relative to smaller fish of the same sex. Hypothalamic proVT transcript abundance was elevated in dominant males compared to subordinate males, and correlated positively with individual variation in aggression in both social classes. Transcripts encoding vasotocin receptor v1a1 were at higher levels in the telencephalon and hypothalamus of socially subordinate males than dominant males. Dominant males exhibited elevated hypothalamic v1a2 receptor transcript abundance relative to subordinate males and females, and telencephalic v1a2 mRNA abundance in dominant males was also associated positively with individual aggressiveness. Transcripts in the telencephalon encoding itr were elevated in females relative to males, and both telencephalic proIT and hypothalamic itr transcript abundance varied with female social status. Taken together, these data link hypothalamic proVT expression to aggression and implicate forebrain expression of the V1a-type receptor v1a2 as potentially mediating the effects of vasotocin on behaviour in male fish. These findings also illustrate how associations between social status, aggression and gene expression within the VT and IT nonapeptide systems can be contingent on behavioural context.