Nitric oxide (NO) is a novel type of neurotransmitter that is closely associated with synaptic plasticity, learning and memory. In the present study, we assessed the effects of L-arginine and N ω -nitro-Larginine methylester (L-NAME, a nitric oxide synthase inhibitor) on learning and memory. Rats were assigned to three groups receiving intracerebroventricular injections of L-Arg (the NO precursor), L-NAME, or 0.9% NaCl (control), once daily for seven consecutive days. Twelve hours after the last injection, they underwent an electric shock-paired Y maze test. Twenty-four hours later, the rats' memory of the safe illuminated arm was tested. After that, the levels of NO and α7 nicotinic acetylcholine receptor (α7 nAChR) in the prefrontal cortex and hippocampus were assessed using an NO assay kit, and immunohistochemistry and Western blots, respectively. We found that, compared to controls, L-Arg-treated rats received fewer foot shocks and made fewer errors to reach the learning criterion, and made fewer errors during the memory-testing session. In contrast, L-NAME-treated rats received more foot shocks and made more errors than controls to reach the learning criterion, and made more errors during the memory-testing session. In parallel, NO content in the prefrontal cortex and hippocampus was higher in L-Arg-treated rats and lower in L-NAME rats, compared to controls. Similarly, α7 nAChR immunoreactivity and protein expression in the prefrontal cortex and hippocampus were higher in L-Arg-treated rats and lower in L-NAME rats, compared to controls. These results suggest that the modulation of NO content in the brain correlates with α7 nAChR distribution and expression in the prefrontal cortex and hippocampus, as well as with learning and memory performance in the Y-maze.