During the development of load-carrying systems uncertainty caused by nescience can be handled applying resilience design. With this systematic approach, in addition to robust design, resilient system properties can be achieved. The resilience design methodology comprises new and extended models and methods. The central aspect of resilient properties is an adaptivity of the system. The procedure for resilience design starts with choosing a ‘general coping strategy’ appropriate for the design task. Based on this, a more detailed ‘system coping strategy’ is developed. This concrete strategy is based on the resilience functions responding, monitoring, anticipating and learning. The coping strategies always contain the function ‘responding’ because it represents the actual adaption of the system. The central, most abstract synthesis model for developing robust and resilient systems is the functional structure model. In this model the system functions and their interconnection by signals, material and energy flows are depicted. However, the realisation of resilience properties requires additional signals and flows. Hitherto, the functional structure for robust systems is static, whereas adaptivity requires flexible control of functions and flows. Therefore, an extension of the functional structure model is proposed to be able to depict the resilient system coping strategy and adaptivity. Within the resilient system the coping strategy is depicted by adaption functions based on the four resilience functions. Via an introduced interface and an enabler-structure the adaption functions are connected to the robust functional structure. The application of the proposed extension is illustrated by the example of a by-wire car brake system.