Resilience as a concept has found its way into different disciplines to describe the ability of an individual or system to withstand and adapt to changes in its environment. In this paper, we provide an overview of the concept in different communities and extend it to the area of mechanical engineering. Furthermore, we present metrics to measure resilience in technical systems and illustrate them by applying them to load-carrying structures. By giving application examples from the Collaborative Research Centre (CRC) 805, we show how the concept of resilience can be used to control uncertainty during different stages of product life.
Resilient systems have the capability to survive and recover from seriously affecting events. Resilience engineering already is established for socio-economic organisations and extended network-like structures e. g. supply systems like power grids. Transferring the known principles and concepts used in these disciplines enables engineering resilient load-carrying systems and subsystems, too. Unexpected load conditions or component damages are summarised as disruptions caused by nesciense that may cause damages to the system or even system breakdowns. Disruptions caused by nescience can be controlled by analysing the resilience characteristics and synthesising resilient load-carrying systems. This paper contributes to a development methodology for resilient load-carrying systems by presenting a resilience applications model to support engineers analysing system resilience characteristics and behaviour. Further a concept of a systematically structured solution catalogue is provided that can be used for the classification of measures to realise resilience functions depending on system adaptivity and disruption progress. The resilience characteristics are illustrated by 3 examples.
Resilience in load-carrying systems enables to avoid catastrophes by avoiding a complete failure especially of highly safety-relevant systems. For its realisation a resilience design methodology is being developed. As part of the methodology a procedure for deducing resilient coping strategies from functional resilience characteristics and system requirements is shown. Furthermore the synthesis of suitable functional structures based on the coping strategy is introduced. The functional structure can be described via an extended representation form for functional structures that allows to depict the superior coping strategy as well as a system adaptivity which is required for resilient properties.
Load-carrying systems often suffer from unexpected disruptions which can cause damages or system breakdowns if they were neglected during product development. In this context, unexpected disruptions summarize unpredictable load conditions, external disturbances or failures of system components and can be comprehended as uncertainties caused by nescience. While robust systems can cope with stochastic uncertainties, uncertainties caused by nescience can be controlled only by resilient load-carrying systems. This paper gives an overview of the characteristics of resilience as well as the time-dependent resilient behaviour of subsystems. Based on this, the adaptivity of subsystems is classified and can be distinguished between autonomous and externally induced adaption and the temporal horizon of adaption. The classification of adaptivity is explained using a simple example of a joint brake application.
Hygienic design is of fundamental importance in the development of food processing machines. A hygiene appropriate design leads to lower maintenance work for machine operators and to clean food free of contamination. Designers have access to plenty of guidelines that support the embodiment design and detailing of specific equipment. The Working Space Model is a suitable adaptation of the wellknown and established Contact & Channel Model, which aids designers in systematically considering hygiene-relevant requirements during the conceptual design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.