Abstract. Successful news recommendation requires facing the challenges of dynamic item sets, contextual item relevance, and of fulfilling non-functional requirements, such as response time. The CLEF NewsREEL challenge is a campaignstyle evaluation lab allowing participants to tackle news recommendation and to optimize and evaluate their recommender algorithms both online and offline. In this paper, we summarize the objectives and challenges of NewsREEL 2016. We cover two contrasting perspectives on the challenge: that of the operator (the business providing recommendations) and that of the challenge participant (the researchers developing recommender algorithms). In the intersection of these perspectives, new insights can be gained on how to effectively evaluate real-time stream recommendation algorithms.