Plants live in constantly moving fluid, whether air or water. In response to the loads associated with fluid motion, plants bend and twist, often with great amplitude. These large deformations are not found in traditional engineering application and thus necessitate new specialized scientific developments. Studying fluid–structure interaction (FSI) in botany, forestry, and agricultural science is crucial to the optimization of biomass production for food, energy, and construction materials. FSIs are also central in the study of the ecological adaptation of plants to their environment. This review paper surveys the mechanics of FSI on individual plants. I present a short refresher on fluid mechanics then dive into the statics and dynamics of plant–fluid interactions. For every phenomenon considered, I examine the appropriate dimensionless numbers to characterize the problem, discuss the implications of these phenomena on biological processes, and propose future research avenues. I cover the concept of reconfiguration while considering poroelasticity, torsion, chirality, buoyancy, and skin friction. I also assess the dynamical phenomena of wave action, flutter, and vortex-induced vibrations.