This study was designed to determine whether the tight-junction (TJ) proteins of the blood-brain barrier (BBB) and the PI3K-Akt-mTOR signaling pathway are involved during arsenic (As)-induced autophagy in developing mouse cerebella after exposure to different As concentrations (0, 0.15, 1.5, and 15 mg/L As(III)) during gestational and lactational periods. The dosage was continually given to the pups until postnatal day (PND) 42. Studies conducted at different developmental age points, like PND21, 28, 35, and 42, showed that exposure to As led to a significant decrease in the mRNA-expression levels of TJ proteins (occludin, claudin, ZO-1, and ZO-2), PI3K, Akt, mTOR, and p62, with concomitant increases in Beclin1, LC3I, LC3II, Atg5, and Atg12. Also, As significantly downregulated occludin and mTOR protein-expression levels with concomitant upregulation of Beclin1, LC3, and Atg12 at all the developmental age points. However, no significant alterations were observed in low- and medium-dose-exposed groups at PND42. Histopathological analysis revealed the irregular arrangement of the Purkinje cell layer in the As-exposed mice. Ultrastructural analysis by transmission electron microscopy (TEM) revealed the occurrence of autophagosomes and vacuolated axons in the cerebella of the mice exposed to high doses of As at PND21 and 42, respectively. Finally, we conclude that developmental As exposure significantly alters TJ proteins, resulting an increase in BBB permeability, facilitating the ability of As to cross the BBB and induce autophagy, which might be partly the result of inhibition of the PI3K-Akt-mTOR signaling pathway, in an age-dependent manner (i.e., PND21 mice were found to be more vulnerable to As-induced neurotoxicity), which could be due to the immature BBB allowing As to cross through it. However, the effect was not significant in PND42, which could be due to the developed BBB.