Bees represent vital natural assets contributing significantly to global food production and the maintenance of ecosystems. While studies on climate change effects impacting major pollinators like honeybees and bumblebees raise concerns about global diversity and crop productivity, comprehensive global-scale analyses remain limited. This study explores the repercussions of global warming on 1365 bees across seven families of bees worldwide. To compile a robust global bee occurrence dataset, we utilized the innovative ‘BeeBDC’ R package that amalgamated over 18.3 million bee occurrence records sourced from various repositories. Through species distribution models under the SSP585 scenario in the year 2070, we assessed how climate change influences the climate suitability of bees on a global scale, examining the impacts across continents. Our findings suggested that approximately 65% of bees are likely to witness a decrease in their distribution, with reductions averaging between 28% in Australia and 56% in Europe. Moreover, our analysis indicated that climate change’s impact on bees is projected to be more severe in Africa and Europe, while North America is expected to witness a higher number (336) of bees expanding their distribution. Climate change’s anticipated effects on bee distributions could potentially disrupt existing pollinator–plant networks, posing ecological challenges that emphasize the importance of pollinator diversity, synchrony between plants and bees, and the necessity for focused conservation efforts.