IntroductionAccording to the sp-hybridization model, the carbon-carbon triple bond possesses a linear structure, and indeed, many alkynes fulfill this prediction. High level ab initio calculations [1] of isolated alkyne molecules, as well as gas phase electron diffraction experiments [2] reveal their linear minimum structure. On the other hand, given that the C C-R bending force constant becomes intrinsically smaller for substituted alkynes and polyynes, crystal packing effects may lead to deviations from strictly linear geometries [3]. From a dynamic point of view even in the case of acetylene one has to include the -albeit reduced -flexibility of the carboncarbon triple bond in order to describe, for example, the vinylidene acetylene rearrangement (see below) [4]. Further, the linear sp-hybrid picture only holds true for the electronic ground state. Cis-and trans-bent configurations are known in the case of low-lying electronic states [5]. Nevertheless, many alkynes correspond to the prediction of linearity due to the sp-hybrid model, and we have collected a selection of typical examples, reaching from the parent compound acetylene 1 via a few alkyl 2-4 and aryl acetylenes 5-7 to a functionalized acetylene, dimethyl acetylenedicarboxylate 8, in Scheme 7.1, together with the appropriate references [1, 2, 6-11], all dating from the recent literature.The easiest way to distort a triple bond is to incorporate it into a sufficiently small ring structure. The question, of course, is what this ring size is, and from what ring size on the respective cycloalkynes can we isolate compounds, that can be worked with under normal laboratory conditions [12]. Rather than using the nonspecific term 'distorted cycloalkyne' Krebs [12] prefers to speak of 'angle-strained cycloalkynes'. Since it is easier to deform a C C-C arrangement than its more hydrogenated olefinic and saturated analogs, relatively large angle deformations are possible in cycloalkynes without significant changes in energy. Krebs arbitrarily considers all cycloalkynes in which the C C-C angle is deformed by more than 10° as angle-strained [12]. Accepting this definition, the stable cyclononyne (see below) is an angle-strained cycloalkyne, whereas cyclodecyne is not.