We introduce scientific claim verification, a new task to select abstracts from the research literature containing evidence that SUP-PORTS or REFUTES a given scientific claim, and to identify rationales justifying each decision. To study this task, we construct SCI-FACT, a dataset of 1.4K expert-written scientific claims paired with evidence-containing abstracts annotated with labels and rationales. We develop baseline models for SCIFACT, and demonstrate that simple domain adaptation techniques substantially improve performance compared to models trained on Wikipedia or political news. We show that our system is able to verify claims related to COVID-19 by identifying evidence from the CORD-19 corpus. Our experiments indicate that SCIFACT will provide a challenging testbed for the development of new systems designed to retrieve and reason over corpora containing specialized domain knowledge. Data and code for this new task are publicly available at https:// github.com/allenai/scifact. A leaderboard and COVID-19 fact-checking demo are available at https://scifact.apps. allenai.org. * Work performed during internship with the Allen Institute for Artificial Intelligence.More severe COVID-19 infection is associated with higher mean troponin (SMD 0.53, 95% CI 0.30 to 0.75, p < 0.001)
Decision: SUPPORTS
Claim
Fact-checker Rationale
CorpusCardiac injury is common in critical cases of COVID-19.Claim 1: Lopinavir / ritonavir have exhibited favorable clinical responses when used as a treatment for coronavirus. Supports: . . . Interestingly, after lopinavir/ritonavir (Kaletra, AbbVie) was administered, β-coronavirus viral loads significantly decreased and no or little coronavirus titers were observed.
Refutes:The focused drug repurposing of known approved drugs (such as lopinavir/ritonavir) has been reported failed for curing SARS-CoV-2 infected patients. It is urgent to generate new chemical entities against this virus . . .
Claim 2:The coronavirus cannot thrive in warmer climates. Supports: ...most outbreaks display a pattern of clustering in relatively cool and dry areas...This is because the environment can mediate human-to-human transmission of SARS-CoV-2, and unsuitable climates can cause the virus to destabilize quickly... Refutes: ...significant cases in the coming months are likely to occur in more humid (warmer) climates, irrespective of the climate-dependence of transmission and that summer temperatures will not substrantially limit pandemic growth.