Metasurface holography offers significant advantages, including a broad field of view, minimal noise, and high imaging quality, making it valuable across various optical domains such as 3D displays, VR, and color displays. However, most passive pure-structured metasurface holographic devices face a limitation: once fabricated, as their functionality remains fixed. In recent developments, the introduction of multiplexed and reconfigurable metasurfaces breaks this limitation. Here, the comprehensive progress in holography from single metasurfaces to multiplexed and reconfigurable metasurfaces is reviewed. First, single metasurface holography is briefly introduced. Second, the latest progress in angular momentum multiplexed metasurface holography, including basic characteristics, design strategies, and diverse applications, is discussed. Next, a detailed overview of wavelength-sensitive, angle-sensitive, and polarization-controlled holograms is considered. The recent progress in reconfigurable metasurface holography based on lumped elements is highlighted. Its instant on-site programmability combined with machine learning provides the possibility of realizing movie-like dynamic holographic displays. Finally, we briefly summarize this rapidly growing area of research, proposing future directions and potential applications.