The partial discharge (PD) leads to catastrophic failure of the medium voltage (MV) switchgear insulation. Determination of the PD source (defect) location in high voltage (HV) equipment is very important in the maintenance procedures and in isolating the root cause of PD generation. In this paper, the transient earth voltage (TEV) detection method was used to acquire defect-initiated PD signals in a simulated MV switchgear model. An array of four TEV sensors were placed on the surface walls outside an MV switchgear tank to acquire the PD signals generated from the known location(s)/coordinates of sharp needle type defect inside the tank. The time difference of arrival (TDOA) between signals that are captured by the TEV sensors array was critically analyzed. Estimating the TDOA between PD signals generated by PD source at a known location with high accuracy is of great importance for accurate defect localization. The cumulative energy method (CEM) is used to estimate the onset time point of each TEV signal. The estimated TDOA by the cumulative energy method is compared with actual and expected TDOA based on known coordinates of PD source and TEV sensors. Experimental data are used as a basis for determining the TEV method accuracy for PD source localization. Experimental results show the average error of time difference is about 1.34 ns, which is equivalent to the propagation distance of 0.4 m.