It is important to ensure that a grounding system is designed with a low magnitude of earth resistance, so the protection system can divert the large fault current to earth effectively. The performances and protection level of a grounding system need to be acknowledged as the condition of soil structure changes with different soil characteristics. At present, there is a lack of systematic guide or standards for grounding grid designs that consider non-uniform soil and its impact on the grounding systems. By computing the grid safety threshold parameters consisting of the grid impedance, step, and touch voltages, a comparison has been made between uniform soil and two-layer soil models. Where the competence and level of safety of the grounding systems depend on the soil attributes, the significant impact of various soil conditions is seen. The evaluations on performance and safety assessment in two-layer soil conditions hold the novelty and originality as there is no such comparison and discussion have been made to date. These comparisons would help in forecasting the behavior and safety of the grounding system in various soil environments, which would provide engineers with additional expertise to design an effective and secure grounding system. This research would contribute to the existing body of knowledge by differentiating and predicting the performance of a grounding system when the characteristics of the soil differ significantly from uniform soil as most of the standards and guidelines only consider uniform soil while designing a grounding system, owing to its complexity at the site. INDEX TERMS grounding grid impedance, step voltage, touch voltage, multilayer soil, uniform soil, non-homogeneous soil.
Substations are important parts of electric power systems, and they require well-designed grounding systems. A proper grounding system guarantees the safety of the personnel working in an environment surrounded by grounded equipment from possible electric shock, protects the equipment against unnecessary breakdowns, and conserves the stability of the entire electrical system throughout its operation. Grounding systems developed under power frequency conditions generally react differently under high frequency and transient conditions, such as switching transients and lightning strikes. This work reviews the modeling methods for substation grounding systems and their performance when grounding design parameters change under high frequency and transient fault conditions.
Designing an effective grounding system for AC substations needs predetermination of ground resistance and ground potential distribution caused by fault current’s presence in the ground. Therefore, it is necessary to have a suitable grounding grid structure in the soil properties in which the grid is buried. Though the soil composition where the grounding grid is located is typically non-homogeneous, the soil is often presumed to be homogeneous due to the complexities of grounding system analysis in non-homogeneous soil. This assumption will lead to inaccuracies in the computation of ground resistance and ground potentials. Although extensive research has been done on non-homogeneous soil structure, comprehensive literature on grounding system performance in non-homogeneous soil is yet to be reviewed. Thus, this paper reviews the effect of non-homogeneous soil on the grounding system, with different soil characteristics in horizontal and vertical two-layer soil structure and the horizontal three-layer soil structure. In addition, the effect of design parameters on the grounding performance in non-homogeneous soil conditions for non-transient fault conditions is also studied. The significance of this study is that it provides a comprehensive review of grounding performance as grounding design changes and their effects as soil layers and their corresponding features change. This knowledge will be useful in developing safe grounding designs in non-homogeneous soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.