2021
DOI: 10.1088/1742-6596/1933/1/012030
|View full text |Cite
|
Sign up to set email alerts
|

Best Model and Performance of Bayesian Regularization Method for Data Prediction

Abstract: The backpropagation algorithm has many training and activation functions that can be used to influence or maximize prediction results, all of which have their respective advantages and disadvantages. The purpose of this paper is to analyze one of the training functions of the backpropagation algorithm which can be used as a reference for use in data prediction problems in the form of models and best performance. The training function is the Bayesian Regularization method. This method is able to train the netwo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2022
2022
2022
2022

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 12 publications
0
1
0
1
Order By: Relevance
“…Bayesian Regularization, also known as backpropagation, is another ANN training algorithm that updates the weights and biases as per the LM optimization [ 40 ]. One-step secant (OSS) algorithm connects the quasi-Newton approach and conjugate gradient algorithms.…”
Section: Ann and Gep Modelsmentioning
confidence: 99%
“…Bayesian Regularization, also known as backpropagation, is another ANN training algorithm that updates the weights and biases as per the LM optimization [ 40 ]. One-step secant (OSS) algorithm connects the quasi-Newton approach and conjugate gradient algorithms.…”
Section: Ann and Gep Modelsmentioning
confidence: 99%
“…Penelitian terdahulu yang sudah pernah dilakukan sebelumnya terkait penelitian ini dan menjadi rujukan, antara lain: Penelitian dengan menggunakan algoritma Bayesian regulation untuk menentukan model dan kinerja terbaik dalam menyelesaikan masalah prediksi angka Partisipasi Pendidikan Formal di Indonesia Tahun 2015-2020 yang terdiri dari Angka Partisipasi Sekolah, Angka Partisipasi Kasar, dan Angka Partisipasi Murni. Berdasarkan proses analisis dan perhitungan didapatkan hasil model 2-15-1 yang terbaik dengan epoch 217 iterasi dan MSE sebesar 0,00002945 [10]. Penelitian berikutnya menggunakan algoritma Bayesian regulation untuk mengestimasi Indeks Produksi Industri Mikro dan Kecil menurut KBLI.…”
Section: Pendahuluanunclassified