Best Practices in Quantitative Methods 2008
DOI: 10.4135/9781412995627.d14
|View full text |Cite
|
Sign up to set email alerts
|

Best Practices in Quasi–Experimental Designs: Matching Methods for Causal Inference

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
211
0
3

Year Published

2013
2013
2024
2024

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 262 publications
(215 citation statements)
references
References 124 publications
(181 reference statements)
1
211
0
3
Order By: Relevance
“…Para compensar esta ausencia se recurre al empleo de grupos de tratamiento, grupos de control, medidas pretest y postest y técnicas de control experimental (p.e., métodos de emparejamiento, véase Stuart & Rubin, 2008) con el objeto de controlar las diferencias preexistentes entre grupos. Sin embargo, en determinadas áreas de la psicología aplicada los diseños cuasiexperimentales son más utilizados que otras alternativas de diseño.…”
Section: Diseños Cuasiexperimentalesunclassified
“…Para compensar esta ausencia se recurre al empleo de grupos de tratamiento, grupos de control, medidas pretest y postest y técnicas de control experimental (p.e., métodos de emparejamiento, véase Stuart & Rubin, 2008) con el objeto de controlar las diferencias preexistentes entre grupos. Sin embargo, en determinadas áreas de la psicología aplicada los diseños cuasiexperimentales son más utilizados que otras alternativas de diseño.…”
Section: Diseños Cuasiexperimentalesunclassified
“…No variable poses a statistically significant difference in its mean value between the treatment and control groups after matching. All but two covariates exhibit a variance ratio within the range from 0.5 to 2 recommended by Stuart and Rubin (2007). Table 3 summarises estimation results.…”
Section: Resultsmentioning
confidence: 99%
“…First, matching methods introduce some of the advantages of a randomized experiment into a study based on observational data. Second, matching methods reduce the sensitivity of results to model-based and inherently untestable assumptions (Stuart and Rubin 2007). Matching methods and regression-based model adjustments are not mutually exclusive, however.…”
Section: Methodsmentioning
confidence: 99%
“…In fact, many scholars argue that the best approach is often to combine the two methods by conducting regression adjustment on balanced samples (Heckman et al 1997, Abadie and Imbens 2006, Ho et al 2007). The logic behind this combined empirical strategy is that the matching methods make it possible to reduce large covariate bias between the treated and control groups, and the traditional regression methods can be used to adjust for any residual bias and to increase efficiency (Stuart and Rubin 2007).…”
Section: Methodsmentioning
confidence: 99%