The Hardy-Rogers p-proximal cyclic contraction, which includes the cyclic, Kannan, Chatterjea and Reich contractions as sub-classes, is developed in uniform spaces. The existence and uniqueness results of best proximity points for these contractions are proved. The results, which are for non-self maps, apart from the fact that they are new in literature, generalise several other similar results in literature. Examples are given to validate the results obtained.
MSC: 47H10; 54H25