Based on the experimental parameters in HL-2A tokamak, hybrid simulations have been carried out to investigate the linear stability and nonlinear dynamics of BAE. It is found that the (m/n=3/2) beta-incuced Alfvén eigenmode (BAE) is excited by co-passing energetic ions with qmin=1.5 in linear simulation, and the mode frequency is consistent with experimental meuasurement. The simulation results show that the energetic ions βh, the injection velocity v0 and orbit width parameter ρh of energetic ions are important parameters determining the drive of BAE. Furthermore, the effect of qmin (with fixed shape of q profile) is studied, and it is found that: when qmin ≤ 1.50, the excited modes are BAEs, which are located near q=1.50 rational surfaces; when qmin > 1.50, the excited modes are simillar to the reversed-shear Alfvén eigenmodes (RSAEs), which are mainly localized around q=qmin surfaces. Nonlinear simulation results show that the nonlinear dynamics of BAE is sensitive to the EP drive. For strongly driven case, firstly, redistribution and transport of engetic ions are trigged by (m/n=3/2) BAE, which raised the radial gradient of energetic ions distribution function near q=2 rational surface, and then an EPM (m/n=4/2) is driven in nonlinear phase. Finally, these two instabilities triggered significant redistribution of energetic ions, which results in the twice-repeated and mostly-downward frequency chirping of (m/n=3/2) BAE. For weakly driven case, there are no (m/n=4/2) EPM being driven and twice-repeated chirping in nonlinear phase, since the radial gradient near q=2 rational surface is small and almost unchanged.