During adulthood, the neurotrophin Nerve Growth Factor (NGF) sensitizes
nociceptors, thereby increasing the response to noxious stimuli. The
relationship between NGF and pain is supported by genetic evidence: mutations in
the NGF TrkA receptor in patients affected by an hereditary rare disease
(Hereditary Sensory and Autonomic Neuropathy type IV, HSAN IV) determine a
congenital form of severe pain insensitivity, with mental retardation, while a
mutation in NGFB gene, leading to the aminoacid substitution
R100W in mature NGF, determines a similar loss of pain
perception, without overt cognitive neurological defects (HSAN V). The R100W
mutation provokes a reduced processing of proNGF to mature NGF in cultured cells
and a higher percentage of neurotrophin secreted is in the proNGF form.
Moreover, using Surface Plasmon Resonance we showed that the R100W mutation does
not affect NGF binding to TrkA, while it abolishes NGF binding to p75NTR
receptors. However, it remains to be clarified whether the major impact of the
mutation is on the biological function of proNGF or of mature NGF and to what
extent the effects of the R100W mutation on the HSAN V clinical phenotype are
developmental, or whether they reflect an impaired effectiveness of NGF to
regulate and mediate nociceptive transmission in adult sensory neurons. Here we
show that the R100 mutation selectively alters some of the signaling pathways
activated downstream of TrkA NGF receptors. NGFR100 mutants maintain identical
neurotrophic and neuroprotective properties in a variety of cell assays, while
displaying a significantly reduced pain-inducing activity in
vivo (n = 8–10 mice/group). We also show
that proNGF has a significantly reduced nociceptive activity, with respect to
NGF. Both sets of results jointly contribute to elucidating the mechanisms
underlying the clinical HSAN V manifestations, and to clarifying which receptors
and intracellular signaling cascades participate in the pain sensitizing action
of NGF.