“…The Hasimoto transformation has been generalized in [51] to the Riemannian manifold with constant curvature, which is used to obtain the corresponding integrable equations associated with the invariant non-stretching curve flows. The parallel frames and other kinds of frames are also used to derive bi-Hamiltonian operators and associated hierarchies of multi-component soliton equations from non-stretching curve flows on Lie group manifolds [3,4,31,39]. The KdV equation, the modified KdV equation, the Sawada-Kotera equation and the Kaup-Kuperschmidt equation were shown to arise from the invariant curve flows respectively in centro-equiaffine geometry [7,9,48], Euclidean geometry [21], special affine geometry [11,35] and projective geometries [11,30,41].…”