Group based moving frames have a wide range of applications, from the classical equivalence problems in differential geometry to more modern applications such as computer vision.Here we describe what we call a discrete group based moving frame, which is essentially a sequence of moving frames with overlapping domains. We demonstrate a small set of generators of the algebra of invariants, which we call the discrete Maurer-Cartan invariants, for which there are recursion formulae. We show that this offers significant computational advantages over a single moving frame for our study of discrete integrable systems. We demonstrate that the discrete analogues of some curvature flows lead naturally to Hamiltonian pairs, which generate integrable differential-difference systems. In particular, we show that in the centro-affine plane and the projective space, the Hamiltonian pairs obtained can be transformed into the known Hamiltonian pairs for the Toda and modified Volterra lattices respectively under Miura transformations. We also show that a specified invariant map of polygons in the centro-affine plane can be transformed to the integrable discretization of the Toda Lattice. Moreover, we describe in detail the case of discrete flows in the homogeneous 2-sphere and we obtain realizations of equations of Volterra type as evolutions of polygons on the sphere.
Abstract. We construct integrable hierarchies of flows for curves in centroaffine R 3 through a natural pre-symplectic structure on the space of closed unparametrized starlike curves. We show that the induced evolution equations for the differential invariants are closely connected with the Boussinesq hierarchy, and prove that the restricted hierarchy of flows on curves that project to conics in RP 2 induces the Kaup-Kuperschmidt hierarchy at the curvature level.
In this paper we find a discrete moving frame and their associated invariants along projective polygons in RP n , and we use them to describe invariant evolutions of projective N -gons. We then apply a reduction process to obtain a natural Hamiltonian structure on the space of projective invariants for polygons, establishing a close relationship between the projective N -gon invariant evolutions and the Hamiltonian evolutions on the invariants of the flow. We prove that any Hamiltonian evolution is induced on invariants by an invariant evolution of N -gons-what we call a projective realization-and both evolutions are connected explicitly in a very simple way. Finally, we provide a completely integrable evolution (the Boussinesq lattice related to the lattice W 3 -algebra), its projective realization in RP 2 and its Hamiltonian pencil. We generalize both structures to n-dimensions and we prove that they are Poisson, defining explicitly the n-dimensional generalization of the planar evolution (a discretization of the W n -algebra). We prove that the generalization is completely integrable, and we also give its projective realization, which turns out to be very simple.
In this paper we prove that the generalization to RP n of the pentagram map defined in [3] is invariant under certain scalings for any n. This property allows the definition of a Lax representation for the map, to be used to establish its integrability. arXiv:1303.4295v1 [math.DS]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.