2016
DOI: 10.1016/j.asoc.2015.10.067
|View full text |Cite
|
Sign up to set email alerts
|

Bi-objective optimization of three echelon supply chain involving truck selection and loading using NSGA-II with heuristics algorithm

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
16
0
2

Year Published

2017
2017
2023
2023

Publication Types

Select...
8
2

Relationship

0
10

Authors

Journals

citations
Cited by 39 publications
(18 citation statements)
references
References 25 publications
0
16
0
2
Order By: Relevance
“…They present a two-stage biobjective mixed integer stochastic programming model for providing strategic and tactical decisions, respectively, in the first and second stages to minimize costs and also the negative impact.Özceylan et al [20] develop a mixed integer nonlinear programming (MINLP) model, which optimizes the tactical decisions on balancing the decomposition lines in the reverse supply chain and the strategic decisions related to the quantity of Mathematical Problems in Engineering 3 (Table 1). However, recently other researchers have investigated this problem meticulously (e.g., [22,23]). Table 1 summarizes similar works and highlights our contribution in this study.…”
Section: Literature Reviewmentioning
confidence: 99%
“…They present a two-stage biobjective mixed integer stochastic programming model for providing strategic and tactical decisions, respectively, in the first and second stages to minimize costs and also the negative impact.Özceylan et al [20] develop a mixed integer nonlinear programming (MINLP) model, which optimizes the tactical decisions on balancing the decomposition lines in the reverse supply chain and the strategic decisions related to the quantity of Mathematical Problems in Engineering 3 (Table 1). However, recently other researchers have investigated this problem meticulously (e.g., [22,23]). Table 1 summarizes similar works and highlights our contribution in this study.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Since supply chain optimization issues include NP-hard problems, many researchers have used metaheuristic algorithms to solve large-scale problems [2,[12][13][14]. Setak et al (2016) used SA and GA algorithms to overcome an issue of concurrent pickup and distribution with semi-soft time windows [12][13][14]. Wang et al (2016) proposed an advanced cross-entropy algorithm for solving a closed-loop supply chain planning and compared the results of the problem-solving in the three algorithms of cross-entropy, GA, and advanced cross-entropy [15].…”
Section: Metaheuristic Algorithms In a Supply Chain Optimization Problemmentioning
confidence: 99%
“…NSGA-II, düşük hesaplama karmaşıklığına sahip, hızlı ve seçkinliği dikkate alan bir algoritma olduğu için, literatürde pek çok alanda uygulaması bulunmaktadır. İşçi atama problemi [37], proje yönetimi alanında karar alternatiflerinin elde edilmesi [38], tedarik zinciri dağıtım problemi [39], çok dönemli stok kontrol problemi [40], kablosuz algılayıcı ağlarda uygun yerleşimin belirlenmesi [41] gibi pek çok problemde Pareto etkin kümenin bulunmasında NSGA-II algoritmasından yararlanılmış, algoritma sonucunda elde edilen Pareto etkin küme üzerindeki domine edilemeyen noktalar, karar vericilere çözüm alternatifleri olarak sunulmuştur. Ancak, TDP'lerinde, NSGA-II algoritmasının kullanıldığı herhangi bir çalışmaya rastlanılmamıştır.…”
Section: Nsga-ii Algori̇tmasi (Nsga-ii Algorithm)unclassified