Dependencies between educational test items can be represented as quasi-orders on the item set of a knowledge domain and used for an efficient adaptive assessment of knowledge. One approach to uncovering such dependencies is by exploratory algorithms of item tree analysis (ITA). There are several methods of ITA available. The basic tool to compare such algorithms concerning their quality are large-scale simulation studies that are crucially set up on a large collection of quasi-orders. A serious problem is that all known ITA algorithms are sensitive to the structure of the underlying quasi-order. Thus, it is crucial to base any simulation study that tries to compare the algorithms upon samples of quasi-orders that are representative, meaning each quasi-order is included in a sample with the same probability. Up to now, no method to create representative quasi-orders on larger item sets is known. Non-optimal algorithms for quasi-order generation were used in previous studies, which caused misinterpretations and erroneous conclusions. In this paper, we present a method for creating representative random samples of quasi-orders. The basic idea is to consider random extensions of quasi-orders from lower to higher dimension and to discard extensions that do not satisfy the transitivity property.