2018
DOI: 10.18287/2412-6179-2018-42-6-1101-1111
|View full text |Cite
|
Sign up to set email alerts
|

Big data analysis in a geoinformatic problem of short-term traffic flow forecasting based on a k nearest neighbors method

Abstract: Аннотация Точная и своевременная информация о текущем и прогнозном распределении транспортных потоков является важным фактором функционирования интеллектуальных транспортных систем. Использование этих данных позволит транспортным агентствам эффективнее решать задачу управления трафиком, участникам дорожного движения точнее планировать маршрут поездки и снизить время движения, и в целом повысит эффективность использования транспортной инфраструктуры. В данной статье представлена модель краткосрочного прогнозиро… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
7
0

Year Published

2019
2019
2022
2022

Publication Types

Select...
4
3
2

Relationship

0
9

Authors

Journals

citations
Cited by 29 publications
(7 citation statements)
references
References 34 publications
0
7
0
Order By: Relevance
“…The crucial objective of this approach is to aid in seeking a solution that determines the most efficient order of supply of each object being regarded. The aim of the task is to cut down the travelled distance or the overall transport costs [45]. This classic heuristic instrument is an unsophisticated method not requiring any intricate computations.…”
Section: Design Of Modelsmentioning
confidence: 99%
“…The crucial objective of this approach is to aid in seeking a solution that determines the most efficient order of supply of each object being regarded. The aim of the task is to cut down the travelled distance or the overall transport costs [45]. This classic heuristic instrument is an unsophisticated method not requiring any intricate computations.…”
Section: Design Of Modelsmentioning
confidence: 99%
“…The applicability of these models to transport systems is limited due to the strong correlation of the variables of the regression function. Nonparametric regression, in particular, the k-nearest-neighbor method, was used to solve the prediction problem in the papers [3,4,5]. However, the requirement of a large sample size imposes a restriction on the use of this method in real time.…”
Section: Related Workmentioning
confidence: 99%
“…Today, Big data can be found in many areas [3,4]. One of the most common ways to get big data is to collect data from sensors and devices.…”
Section: Big Datamentioning
confidence: 99%