The smart electricity grid enables a two-way flow of power and data between
suppliers and consumers in order to facilitate the power flow optimization in
terms of economic efficiency, reliability and sustainability. This
infrastructure permits the consumers and the micro-energy producers to take a
more active role in the electricity market and the dynamic energy management
(DEM). The most important challenge in a smart grid (SG) is how to take
advantage of the users' participation in order to reduce the cost of power.
However, effective DEM depends critically on load and renewable production
forecasting. This calls for intelligent methods and solutions for the real-time
exploitation of the large volumes of data generated by a vast amount of smart
meters. Hence, robust data analytics, high performance computing, efficient
data network management, and cloud computing techniques are critical towards
the optimized operation of SGs. This research aims to highlight the big data
issues and challenges faced by the DEM employed in SG networks. It also
provides a brief description of the most commonly used data processing methods
in the literature, and proposes a promising direction for future research in
the field.Comment: Published in ELSEVIER Big Data Researc