2016
DOI: 10.1007/s41019-016-0022-0
|View full text |Cite
|
Sign up to set email alerts
|

Big Data Reduction Methods: A Survey

Abstract: Research on big data analytics is entering in the new phase called fast data where multiple gigabytes of data arrive in the big data systems every second. Modern big data systems collect inherently complex data streams due to the volume, velocity, value, variety, variability, and veracity in the acquired data and consequently give rise to the 6Vs of big data. The reduced and relevant data streams are perceived to be more useful than collecting raw, redundant, inconsistent, and noisy data. Another perspective f… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
71
0
1

Year Published

2017
2017
2022
2022

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 153 publications
(81 citation statements)
references
References 75 publications
0
71
0
1
Order By: Relevance
“…estimation problem of large-scale data in the way of data stream computation. In future, we will try to combine the I-KDE with the random sample partition (RSP) model [22,23] of big data and seek the practical applications for the I-KDE, e.g., Bayesian classification, density-based clustering, and big data reduction [24].…”
Section: Discussionmentioning
confidence: 99%
“…estimation problem of large-scale data in the way of data stream computation. In future, we will try to combine the I-KDE with the random sample partition (RSP) model [22,23] of big data and seek the practical applications for the I-KDE, e.g., Bayesian classification, density-based clustering, and big data reduction [24].…”
Section: Discussionmentioning
confidence: 99%
“…Big data in Telecom: Telecom companies require a proper searching and analysis [15] of data to get deeper understanding into customer behavior, their service usage preferences, patterns and real-time interests. Here is where Big Data comes in.…”
Section: Fig2 Application Of Big Datamentioning
confidence: 99%
“…Ši rizika pasireiškia per 5V modelį, kurį sudaro penkios charakteristikos, apibūdinančios didžiuosius duomenis: kiekį, greitį, įvairovę, teisingumą ir vertę; yra nemažai atvejų, kai žinomi analizės metodai negali būti taikomi apdorojant didelius (kiekis), įvairių formatų (įvairovė) duomenų kiekius per priimtiną laiką (mažas greitis), dėl to gaunami netikslūs rezultatai (teisingumas), pagal kuriuos parengiamos klaidingos prognozės (žema vertė) (Krasnow Waterman ir Bruening, 2014). Siekiant tikslesnių rezultatų ir teisingesnių prognozių, didiesiems duomenims tvarkyti turėtų būti naudojamos specialios sistemos ir algoritmai (ur Rehman et al, 2016), kurie garantuotų greitesnį, patikimesnį kompleksiškų duomenų apdorojimą.…”
Section: Didžiųjų Duomenų Naudojimo Rizikosunclassified