Future progress in nanoscience and nanotechnology necessitates further development of versatile, labor-, and cost-efficient surface patterning strategies. A new approach to nanopatterning is reported, which utilizes surface segregation of a smooth layer of an end-grafted homopolymer in a poor solvent. The variation in polymer grafting density yields a range of surface nanostructures, including randomly organized pinned spherical micelles, worm-like structures, networks, and porous films. The capability to use the polymer patterns for site-specific deposition of small molecules, polymers, or nanoparticles is shown. This versatile strategy enables patterning of curved surfaces with direct access to the substrate and no need in changing polymer composition to realize different surface patterns.