Replication is a useful technique for distributed database systems and can be implemented in a grid computation environment to provide a high availability, fault tolerant, and enhance the performance of the system. This paper discusses a new protocol named Diagonal Data Replication in 2D Mesh structure (DR2M) protocol where the performance addressed are data availability which is compared with the previous replication protocols, Read-One Write-All (ROWA), Voting (VT), Tree Quorum (TQ), Grid Configuration (GC), and Neighbor Replication on Grid (NRG). DR2M protocol is organized in a logical two dimensional mesh structure and by using quorums and voting techniques to improve the performance and availability of the replication protocol where it reduce the number of copies of data replication for read or write operations. The data file is copied at the selected node of the diagonal site in a quorum. The selection of a replica depends on the diagonal location of the structured two dimensional mesh quorum where the middle node is selected because it is the best location to get a copy of the data if every node has the equal number of request and data accessing in the network. The algorithm in this paper also calculates the best number of nodes in each quorum and how many quorums are needed for N number of nodes in a network. DR2M protocol also ensures that the data for read and write operations is consistency, by proofing the quorum must not have a nonempty intersection quorum. To evaluate DR2M protocol, we developed a simulation model in Java. Our results prove that DR2M protocol improves the performance of the data availability compare to the previous data replication protocol, ROWA, VT, TQ, GC and NRG.