“…Denoising diffusion probabilistic models (DDPMs) (Ho et al, 2020) have demonstrated their great generation potential on various applications, such as text-to-image synthesis (Poole et al, 2022;Gu et al, 2022;Kim & Ye, 2021), image inpainting (Lugmayr et al, 2022;Liu et al, 2022;Kawar et al, 2022), speech synthesis (Huang et al, 2021;Lam et al, 2022;Leng et al, 2022), and molecular conformation generation (Hoogeboom et al, 2022;Jing et al, 2022;Wu et al, 2022;Huang et al, 2022). It involves a diffusion process to gradually add noise to data, and a parameterized denoising process to reverse the diffusion process, sampling through gradually removing the noise from random noise.…”