This study investigated the effects of Lactobacillus plantarum (Lp) and Bifidobacterium animalis ssp. lactis (Ba) in co-cultures with Streptococcus thermophilus (St) on changes in the acidification profile, proteolytic activity, peptide production, in vitro antioxidant activity, and angiotensin-converting enzyme (ACE) inhibitory properties of fermented milks during 21 d of storage at 4°C. The pH values and proteolysis in all batches showed a gradual decrease and increase during storage, respectively. The ACE-inhibitory activity and total antioxidant capacity of all co-fermented milk samples followed a similar pattern, with maximum values on d 6 of storage. The St starter, in conjunction with Ba or Lp or both, enhanced proteolysis, peptide generation, and ACE-inhibitory and antioxidant activity, but decreased pH values compared with St alone. The St-Ba-Lp samples showed higher DPPH • (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity, hydroxyl radical scavenging activity, and total antioxidant capacity, but similar superoxide anion scavenging activity compared to St-Ba or St-Lp samples. The St-Ba samples showed higher DPPH • radical scavenging activity but lower hydroxyl radical scavenging activity than St-Lp samples. In the ACE-inhibitory assays, the St-Lp samples exhibited relatively low activity among the co-fermented milks, digested or not. The presence of Ba and Lp in fermentation together did not affect ACE-inhibitory activity in undigested fermented milks compared with the presence of Ba alone, and St-Ba-Lp fermented milks demonstrated an increase in ACEinhibitory activity after simulated gastrointestinal digestion in storage. Pepsin digestion largely improved ACE-inhibitory activity, except in St-Lp samples, in which the activity was reduced. Further hydrolysis by trypsin reduced final activity in digestion. This study suggests that co-cultured fermentation with probiotics improves in vitro antioxidant and ACE inhibition activity in fermented milks, and this effect is partly due to the higher proteolytic activity of probiotics.