The construction sector is one of the largest creators and distributors of wealth, contributing to economic growth worldwide. However, this economic growth comes together with very high environmental impacts. Thus, rehabilitation solutions that can adapt the current building stock to today’s structural requirements are needed, increasing structural safety, while avoiding the production of demolition waste and the extraction of virgin raw materials, hence lowering the construction sector’s environmental impacts. Such rehabilitation solutions need to be environmentally and economically sound so that stakeholders can make informed decisions based on their needs and priorities. This paper presents a case study of an existing reinforced concrete beam, whose flexural resistance is increased using four alternative strengthening solutions: concrete jacketing, without and with increasing the cross-section size, and plate bonding, using either carbon fibre-reinforced polymer (CFRP) strips or steel plates. These solutions are studied via an environmental and economic cradle-to-gate life cycle assessment (LCA), resulting in a comprehensive comparison of their environmental and economic impacts, followed by a multicriteria and sensitivity analysis and eco-cost approach to determine the optimal solution. According to the criteria considered in the study, when environmental impacts are more valued, the concrete jacketing solution presents the best results and, when cost is dominant in the decision, the bonding of CFRP strips becomes the optimal solution.