Targeted nanomedicines have significantly changed the way new therapeutics are designed to treat disease. Central to successful therapeutics is the ability to control the dynamics of protein–nanomaterial interactions to enhance the therapeutic effect of the nanomedicine. The aim of this review is to illustrate the diversity and versatility of the conjugation approaches involved in the synthesis of antibody–nanoparticle conjugates, and highlight significant new advances in the field of bioconjugation. Such nanomedicines have found utility as both advanced therapeutic agents, as well as more complex imaging contrast agents that can provide both anatomical and functional information of diseased tissue. While such conjugates show significant promise as next generation targeted nanomedicines, it is recognized that there are in fact no clinically approved targeted therapeutics on the market. This fact is reflected upon within this review, and attempts are made to draw some reasoning from the complexities associated with the bioconjugation chemistry approaches that are typically utilized. Present trends, as well as future directions of next generation targeted nanomedicines are also discussed.