The growing trend for personalized medicine calls for more reliable implantable biosensors that are capable of continuously monitoring target analytes for extended periods (i.e., >30 d). While promising biosensors for various applications are constantly being developed in the laboratories across the world, many struggle to maintain reliable functionality in complex in vivo environments over time. In this review, we explore the impact of various biotic and abiotic failure modes on the reliability of implantable biosensors. We discuss various design considerations for the development of chronically reliable implantable biosensors with a specific focus on strategies to combat biofouling, which is a fundamental challenge for many implantable devices. Briefly, we introduce the process of the foreign body response and compare the in vitro and the in vivo performances of state-of-the-art implantable biosensors. We then discuss the latest development in material science to minimize and delay biofouling including the usage of various hydrophilic, biomimetic, drug-eluting, zwitterionic, and other smart polymer materials. We also explore a number of active anti-biofouling approaches including stimuli-responsive materials and mechanical actuation. Finally, we conclude this topical review with a discussion on future research opportunities towards more reliable implantable biosensors.