Abstract:Pyrolysis is an environmental friendly alternative method compared with incineration, and the least time-consuming and smallest infrastructure footprint method compared with bio-chemical and thermo-chemical conversion. Baseline data for the pyrolysis of food waste was obtained in a kinetic study of the thermal decompositions by thermogravimetric analysis. To simulate the difference in the types of food waste, the study was done using model compounds, such as cereals, meat, vegetable, and mixed food waste; the pyrolysis commenced at 150 • C for most food waste and the process terminated at 450 • C to 500 • C. Between one and three peaks were observed on a differential thermogravimetry (DTG) graph, depending on the type of waste being pyrolyzed, reflecting the difference in the time required for pyrolysis of different components of food waste to take place. Depending on the composition of each food, one or four peaks were found, and the pyrolysis patterns of carbohydrate, protein, fat, and cellulose were found. Activation energies and frequency factors were calculated from the rates of conversion, using differential equation analyses. The activation energy increased from 10 kJ/mol to 50 kJ/mol as conversions increased from the 10% to 90%, regardless of the food waste type. The activation energy was measured as 50 kJ/mol, with a slight variation among the type of the food waste. Due to the activation energy being low, food waste consists of carbohydrates and other substances rather than cellulose, hemicellulose, and lignin.