Supercapacitors have become attractive energy storage devices due to their high power density, good cycling stability, and fast charging and discharging speeds. Porous carbon has great specific surface area, high energy density and good conversion performance, so porous carbon as supercapacitor electrode material has been widely concerned. Carbon materials with different dimensions and sizes, such as porous carbon spheres, porous carbon nanotubes (CNTs), porous carbon nanofibers (CNFs) porous graphene (GR) and activated carbon (AC) can provide different performance advantages. At the same time, the composite of porous carbon with metal compounds, conductive polymers and particles containing N/P/O/S can further optimize electrode materials, as well as the significant effects on the increase of specific surface area and energy density are obtained. This article introduces the porous carbon materials used as electrode materials in recent years, as well as their multi-level structural materials and related composite materials. We first introduced porous carbon electrode materials with different dimensions and compared their electrochemical performance. Then, based on various research results, the factors affecting its electrochemical performance were discussed in detail. As well as, the preparation methods of porous carbon electrode materials were introduced, and the specific requirements, advantages and disadvantages of different preparation methods were briefly analyzed. The application of porous carbon electrode materials combined with other materials in supercapacitors is listed. Finally, a summary and outlook of the current research status were supplied, providing reference for the rational design of porous carbon supercapacitors in the future.