SYNOPSISLow-density polyethylene (LDPE) films cografted with vinylene carbonate (VCA) and Nvinyl-N-methylacetamide (VIMA) were studied as a matrix for the immobilization of the enzyme alkaline phosphatase (ALP) either by direct fixation or by inserting spacers. When water-soluble alkyldiamines such as diaminoethylene, diaminobutane, diethylenetriamine, and diaminohexane were used as spacers between the matrix and the enzyme, the surface concentration (SC) of the active ALP coupled on the matrix was increased, whereas the effect of the spacer on the SC was dependent on the length of the spacer. Bovine serum albumin (BSA) was preimmobilized onto the LDPE films to provide a better simulation of the biological environment for the enzyme, and the SC of ALP on the matrix was significantly increased by coupling ALP onto the BSA preimmobilized surfaces. Compared to native ALP, some physicochemical properties of ALP could be improved by the covalent immobilization.