Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Calcium hydroxide represents the most commonly used intracanal dressing between sessions; however, it may not be effective against all types of microorganisms. Several compounds of plant origin have attracted increasing attention from researchers in recent years. The objective of this study was to evaluate the cytocompatibility and antimicrobial activity of calcium hydroxide associated with the essential oil of Cyperus articulatus and the new bioceramic intracanal medicament Bio-C Temp®. Five experimental groups were designed: group Ca–C. articulatus essential oil; group CHPG-calcium hydroxide associated with propylene glycol; group CHCa-essential oil of C. articulatus associated with calcium hydroxide; and group U-UltraCal® XS; group BCT-Bio-C Temp®. The control group was a culture medium. Cytocompatibility was assessed by the methyltetrazolium (MTT) assay after exposure of the Saos-2 human osteoblast-like cell line to dilutions of commercial products/associations for 24 h and 72 h. The antimicrobial activity against mature Enterococcus faecalis biofilm was evaluated by the crystal violet assay. All commercial products/associations showed a cell viability similar to or even higher than the control group (p > 0.05) for both periods evaluated. C. articulatus essential oil associated or not with calcium hydroxide showed better antibiofilm capacity. C. articulatus associated or not with calcium hydroxide showed superior cytocompatibility and antimicrobial capacity, representing a promissory intracanal medicament.
Calcium hydroxide represents the most commonly used intracanal dressing between sessions; however, it may not be effective against all types of microorganisms. Several compounds of plant origin have attracted increasing attention from researchers in recent years. The objective of this study was to evaluate the cytocompatibility and antimicrobial activity of calcium hydroxide associated with the essential oil of Cyperus articulatus and the new bioceramic intracanal medicament Bio-C Temp®. Five experimental groups were designed: group Ca–C. articulatus essential oil; group CHPG-calcium hydroxide associated with propylene glycol; group CHCa-essential oil of C. articulatus associated with calcium hydroxide; and group U-UltraCal® XS; group BCT-Bio-C Temp®. The control group was a culture medium. Cytocompatibility was assessed by the methyltetrazolium (MTT) assay after exposure of the Saos-2 human osteoblast-like cell line to dilutions of commercial products/associations for 24 h and 72 h. The antimicrobial activity against mature Enterococcus faecalis biofilm was evaluated by the crystal violet assay. All commercial products/associations showed a cell viability similar to or even higher than the control group (p > 0.05) for both periods evaluated. C. articulatus essential oil associated or not with calcium hydroxide showed better antibiofilm capacity. C. articulatus associated or not with calcium hydroxide showed superior cytocompatibility and antimicrobial capacity, representing a promissory intracanal medicament.
In this paper, the seeds and rinds of passion fruit, which are the agricultural waste of juice processing, were recycled to investigate their biological activities for sustainable use. De-oiled seed powders (S) were successively extracted by refluxing 95% ethanol (95E), 50E, and hot water (HW), respectively, to obtain S-95EE, S-50EE, and S-HWE. Dried rind powders were successively extracted by refluxing HW and 95E to obtain rind-HWE and rind-95EE, respectively. S-50EE and S-95EE showed the most potent extracts, such as anti-amyloid-β1-42 aggregations and anti-acetylcholinesterase inhibitors, and they exhibited neuroprotective activities against amyloid-β25-35-treated or H2O2-treated SH-SY5Y cells. Scirpusin B and piceatannol were identified in S-95EE, S-50EE, and rind-HWE, and they showed anti-acetylcholinesterase activity at 50% inhibitory concentrations of 62.9 and 258.9 μM, respectively. Daily pretreatments of de-oiled seed powders and rind-HWE (600 mg/kg), S-95EE, and S-50EE (250 mg/kg) or scirpusin B (40 mg/kg) for 7 days resulted in improved learning behavior in passive avoidance tests and had significant differences (p < 0.05) compared with those of the control in scopolamine-induced ICR mice. The seeds and rinds of passion fruit will be recycled as materials for the development of functional foods, promoting neuroprotection and delaying the onset of cognitive dysfunctions.
Stilbenes are polyphenolic allelochemicals synthesized by plants, especially grapes, peanuts, rhubarb, berries, etc., to defend themselves under stressful conditions. They are now exploited in medicine for their antioxidant, anti-proliferative and anti-inflammatory properties. Inflammation is the immune system’s response to invading bacteria, toxic chemicals or even nutrient-deprived conditions. It is characterized by the release of cytokines which can wreak havoc on healthy tissues, worsening the disease condition. Stilbenes modulate NF-κB, MAPK and JAK/STAT pathways, and reduce the transcription of inflammatory factors which result in maintenance of homeostatic conditions. Resveratrol, the most studied stilbene, lowers the Michaelis constant of SIRT1, and occupies the substrate binding pocket. Gigantol interferes with the complement system. Besides these, oxyresveratrol, pterostilbene, polydatin, viniferins, etc., are front runners as drug candidates due to their diverse effects from different functional groups that affect bioavailability and molecular interactions. However, they each have different thresholds for toxicity to various cells of the human body, and thus a careful review of their properties must be conducted. In animal models of autoinflammatory diseases, the mode of application of stilbenes is important to their absorption and curative effects, as seen with topical and microemulsion gel methods. This review covers the diversity seen among stilbenes in the plant kingdom and their mechanism of action on the different inflammatory pathways. In detail, macrophages’ contribution to inflamed conditions in the liver, the cardiac, connective and neural tissues, in the nephrons, intestine, lungs and in myriad other body cells is explored, along with detailed explanation on how stilbenes alleviate the symptoms specific to body site. A section on the bioavailability of stilbenes is included for understanding the limitations of the natural compounds as directly used drugs due to their rapid metabolism. Current delivery mechanisms include sulphonamides, or using specially designed synthetic drugs. It is hoped that further research may be fueled by this comprehensive work that makes a compelling argument for the exploitation of these compounds in medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.