Here, we report all-polymer polysiloxane composites that overcome the long-standing processing problems of silica-reinforced silicone rubbers. Polystyrene fillers are dispersed with styrene/dimethylsiloxane symmetric diblock and triblock copolymers that control the filler morphology, filler−matrix interactions, and filler−filler interactions. Surprisingly, the composites not only rival the traditional silica-reinforced polysiloxane in mechanical properties of cured materials but also have better processability and stability than the silica-filled compound before curing. Large amplitude oscillatory shear experiments demonstrate that the triblock copolymer addition strongly affects the rheological properties. We hypothesize that the bridges and entangled loops that were formed by the triblock copolymer can connect different PS domains to provide additional reinforcement. The aging effect that originates from PDMS chain adsorption on the filler particle surface is also avoided because of the thermodynamic repulsion between PS and PDMS phases.