Perovskite solar cells in which 2D perovskites are incorporated within a 3D perovskite network exhibit improved stability with respect to purely 3D systems, but lower record power conversion efficiencies (PCEs). Here, a breakthrough is reported in achieving enhanced PCEs, increased stability, and suppressed photocurrent hysteresis by incorporating n‐type, low‐optical‐gap conjugated organic molecules into 2D:3D mixed perovskite composites. The resulting ternary perovskite–organic composites display extended absorption in the near‐infrared region, improved film morphology, enlarged crystallinity, balanced charge transport, efficient photoinduced charge transfer, and suppressed counter‐ion movement. As a result, the ternary perovskite–organic solar cells exhibit PCEs over 23%, which are among the best PCEs for perovskite solar cells with p–i–n device structure. Moreover, the ternary perovskite–organic solar cells possess dramatically enhanced stability and diminished photocurrent hysteresis. All these results demonstrate that the strategy of exploiting ternary perovskite–organic composite thin films provides a facile way to realize high‐performance perovskite solar cells.
Perovskite solar cells formed from a 2D/3D bilayer perovskite thin film, where 2D perovskites were created by novel conjugated molecules, exhibited a power conversion efficiency of 21.98% and a dramatically boosted stability was demonstrated.
Perovskite photovoltaics (PPVs) using three-dimensional (3D) perovskites incorporated with two-dimensional (2D) perovskites have drawn great concentration in both academic and industrial sectors. Here, we report high performance of PPVs based on the 2D/3D perovskite bilayer thin film post-annealed with solvent vapor. The 2D/3D perovskite bilayer thin film post-annealed with solvent vapor possesses enlarged crystal size and crystallinity and blue-shifted photoluminescence compared to a 3D MAPbI 3 thin film. Moreover, compared to the PPVs based on a 3D perovskite thin film, enlarged built-in potential, suppressed charge carrier recombination, boosted charge transport, and reduced charge carrier extraction time are observed from the PPVs based on the 2D/3D perovskite bilayer thin film post-annealed with solvent vapor. As a result, perovskite solar cells exhibit a power conversion efficiency of 22.13% and dramatically enhanced stability, and perovskite photodetectors show a photoresponsivity of 1.38 AW −1 , detectivity of 6.52 × 10 14 cm Hz 1/2 W −1 , and linear dynamic range of over 167 dB at room temperature. These results demonstrate that we develop a simple method to approach high-performance PPVs by the 2D/3D perovskite bilayer thin film.
Block polymer self-assembly provides a versatile platform for creating useful materials endowed with three-dimensional periodic network morphologies that support orthogonal physical properties such as high ionic conductivity and a high elastic modulus. However, coil configurations limit conventional linear block polymers to finite ordered network dimensions, which are further restricted by slow self-assembly kinetics at high molecular weights. A bottlebrush architecture can circumvent both shortcomings owing to extended backbone configurations due to side chain crowding and molecular dynamics substantially free of chain entanglements. However, until now, network morphologies have not been reported in AB bottlebrush block copolymers, notwithstanding favorable mean-field predictions. We explored the phase behavior by small-angle X-ray scattering of 133 poly(ethylene-alt-propylene)-b-polystyrene (PEP-PS) diblock and PEP-PS-PEO triblock bottlebrush copolymers prepared by ring-opening metathesis polymerization (ROMP) of norbornene-functionalized poly(ethylene-alt-propylene) (PEP), poly(styrene) (PS), and poly(ethylene oxide) (PEO) macromonomers with total backbone degrees of polymerization N bb between 20 and 40. The PEP-PS diblocks exhibited only cylindrical and lamellar morphologies over the composition range of ca. 30−70%. However, addition of variable-length bottlebrush PEO blocks to diblocks containing 30−50% PS led to the formation of a substantial core−shell double gyroid (GYR) phase window containing 20 bottlebrush triblock specimens, which is the focus of this report. Encouragingly, the GYR unit cell dimensions increased as d ∼ N bb 0.92 , portending the ability to access larger network dimensions than previously obtained with linear AB or ABC block polymers. This work highlights extraordinary opportunities associated with applying facile ROMP chemistry to multiblock bottlebrush polymers.
Room temperature operated, solution-processed ultrasensitive broadband photodetectors are widely used in various industrial companies in the scientific and medical sectors. Herein, we report solution-processed ultrahigh detectivity broadband photodetectors based on the ternary perovskite-organic composites. To ensure the photodetector based on perovskites has a photoresponse from the ultraviolet–visible to the near-infrared (NIR) region, low optical gap n-type conjugated organic molecules are incorporated with the three-dimensional (3D) perovskites mixed with the two-dimensional (2D) perovskites to form the ternary perovskite-organic composites, which possess an extended spectral response up to the NIR region and superior film characteristics compared to the 2D–3D mixed perovskite composites. Moreover, the photodetectors based on the ternary perovskite-organic composites exhibit enhanced photocurrent and suppressed dark current compared to those based on the 2D/3D mixed perovskite composites. As a result, at room temperature, the photodetectors based on the ternary perovskite-organic composites exhibit a spectral response from 375 to 1000 nm, whereas the photodetectors based on the 2D–3D mixed perovskite composites exhibit a spectral response from 375 to 800 nm. Furthermore, the photodetectors based on the ternary perovskite-organic composites have a photodetectivity over 1015 cm Hz1/2 W–1 (Jones) in the ultraviolet–visible region and over 1013 Jones in the NIR region, a linear dynamic range over 110 dB, and a fast response time. All these results demonstrate that we developed a facile way to realize uncooled solution-processed ultrahigh detectivity broadband photodetectors based on the ternary perovskite-organic composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.