a b s t r a c tDue to the rapid technology advancement in integrated circuit era, the need for the high computation performance together with increasing complexity and manufacturing costs has raised the demand for high-performance configurable designs; therefore, the Application-Specific Instruction Set Processors (ASIPs) are widely used in SoC design. The automated generation of software tools for ASIPs is a commonly used technique, but the automated hardware model generation is less frequently applied in terms of final RTL implementations. Contrary to this, the final register-transfer level models are usually created, at least partly, manually. This paper presents a novel approach for automated hardware model generation for ASIPs. The new solution is based on a novel abstract ASIP model and a modeling language (Algorithmic Microarchitecture Description Language, AMDL) optimized for this architecture model. The proposed AMDL-based pre-synthesis method is based on a set of pre-defined VHDL implementation schemes, which ensure the qualities of the automatically generated register-transfer level models in terms of resource requirement and operation frequency. The design framework implementing the algorithms required by the synthesis method is also presented.