The present study contemplates the enzymatic profile of grass carp, including lactate dehydrogenase (LDH), creatinine phosphokinases (CPK), serum glutamic-pyruvic transaminase (SGPT), and alkaline phosphatase (Alk Phosp) under atrazine's acute toxicity effects (LC 50 ) for 01 (15 µl/L), 02 (13 µl/L), 03 (10 µl/L), and 04 (08 µl/L) days/concentration, respectively. For analyzing the enzymatic profile we followed the biochemical analyzer set protocol (Merck micro lab 300 biochemistry analyzer) in the laboratory. Control group concentrations for LDH, CPK, SGPT, and Alk Phosp were 342 IU/ml, 7513.3 IU/ml, 46 mmol/l, and 126.6 IU/ml, respectively. After treatment LDH concentrations were 906, 851, 765, and 545 IU/ml, respectively. CPK concentrations were 1,737, 2,445, 3,718, and 5,767 IU/ml, respectively. SGPT concentrations were 27, 24.3, 13.67, and 8.67, respectively, and Alk Phosp concentrations were 50.3, 30, 22.3, and 17.6 IU/ml, respectively. Maximum inclined (P≤0.001) in concentration of LDH was observed after 24 hrs exposure because of hepatic tissue damage, resulting in increased membrane permeability causing enhanced leaching out of LDH and as LDH participates in an anaerobic pathway, so increase LDH mean increases of anaerobic metabolism resulting from depletion of energy under environmental stress conditions by atrazine, while other enzymatic components like CPK, SGPT, and Alk Phosp showed kindred attributes in their result, like all parameter concentrations showed perpetual decline (P≤0.001) in their concentrations indicating reduced enzymatic activity due to a reduction in permeability for these enzymes, forcing the enzymes to accumulate in the cells as well as decrease in enzyme synthesis due to intoxication of atrazine.