Owing to their special structure and excellent physical and chemical properties, conducting polymers have attracted increasing attention in materials science. In recent years, tremendous efforts have been devoted to improving the comprehensive performance of conducting polymers by using the technique of “doping.” Spherical polyelectrolyte brushes (SPBs) bearing polyelectrolyte chains grafted densely to the surface of core particles have the potential to be novel dopant of conducting polymers not only because of their spherical structure, high grafting density and high charge density, but also due to the possibility of their being applied in printed electronics. This review first presents a summary of the general dopants of conducting polymers. Meanwhile, conducting polymers doped with spherical polyelectrolyte brushes (SPBs) is highlighted, including the preparation, characterization, performance and doping mechanism. It is demonstrated that comprehensive performance of conducting polymers has improved with the addition of SPBs, which act as template and dopant in the synthesis of composites. Furthermore, the applications and future developments of conductive composites are also briefly reviewed and proposed, which would draw more attention to this field.