In this study, the Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorous Removal (DS-EBPR) with 20 mg P/L/d of the volumetric P removal rate was successfully achieved in a Sequencing Batch Reactor (SBR). The effects of carbon-to-sulfur (C/S) mass ratio and nitrate (N) dosage were investigated through two batch tests to reveal the role of wastewater compositions in DS-EBPR performance. The optimal specific P release and uptake rates (0.4 and 2.4 mg P/g VSS/h, respectively) were achieved at C/S/P/N mass ratio of 150/200/20/20, and poly-S is supplied as a potential electron and energy storage. The nitrate dosage in a range of 10–50 mg N/L had no significant influence on P uptake rates (2.1 ~ 2.4 mg P/g VSS/h), but significantly affected the storage of inclusion poly-S, the poly-S oxidation rate was increased about 16% while dosing nitrate from 20 to 30 mg N/L. It implies that nitrate is denitrified in the P uptake phase, and excess nitrate is further consumed by poly-S. Moreover, the microbial analysis showed that the functional bacteria should mostly belong to denitrifying bacteria or Unclassified genera.