2018
DOI: 10.1016/j.mib.2018.01.017
|View full text |Cite
|
Sign up to set email alerts
|

Bioinformatic prediction of plant–pathogenicity effector proteins of fungi

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

2
64
0
3

Year Published

2019
2019
2023
2023

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 76 publications
(76 citation statements)
references
References 57 publications
2
64
0
3
Order By: Relevance
“…Effector features are still complicated to evidence because of very few conserved domains (Jones, Bertazzoni, Turo, Syme, & Hane, 2018;Sperschneider et al, 2016). One way to increase the detection of candidate effectors is the analysis of the predicted subcellular compartments the proteins are predicted to be addressed to.…”
Section: Dynamics Of the Wheat-f Graminearum Dual Proteome Illustrmentioning
confidence: 99%
“…Effector features are still complicated to evidence because of very few conserved domains (Jones, Bertazzoni, Turo, Syme, & Hane, 2018;Sperschneider et al, 2016). One way to increase the detection of candidate effectors is the analysis of the predicted subcellular compartments the proteins are predicted to be addressed to.…”
Section: Dynamics Of the Wheat-f Graminearum Dual Proteome Illustrmentioning
confidence: 99%
“…Effector prediction from microbial pathogen genomes is based on the premise that effector proteins are secreted to the site of action in the plant-pathogen interaction and therefore carry a signal peptide. Furthermore, effector proteins are generally of small size and often carry a proportionally high number of cysteine residues to counter the highly reducing environment of the plant apoplast (Jones et al, 2018). Effector proteins are subject to constant evolution of primary structure while maintaining secondary and tertiary structural elements in order to modify surface chemical properties and topography.…”
Section: Discussionmentioning
confidence: 99%
“…The presence of a predicted signal peptide for secretion to the apoplast and a lack of homologous sequences among other species are further key signatures for necrotrophic effectors of apoplastic plant pathogenic fungi. Computational approaches have been developed to predict effectors from genomic sequences (Sonah et al, 2016;Jones et al, 2018) and EffectorP is a useful program that rates the likelihood of a protein sequence encoding an effector using a machine-learning approach with validated effectors as training data (Sperschneider et al, 2016(Sperschneider et al, , 2018. In addition, secondary metabolites botcinic acid and botrydial are known phytotoxic compounds with established roles in plant disease for other Botrytis species and it is not known whether these compounds contribute to plant diseases caused by B. fabae (Collado and Viaud, 2016).…”
Section: Introductionmentioning
confidence: 99%
“…El análisis de las secuencias genómicas también ha permitido avanzar en la identificación de efectores. Se sabe que algunas de estas proteínas presentan características estructurales similares: en el caso de los Oomycota, a través de métodos bioinformáticos de enriquecimiento especiales es posible predecir secretomas de otras especies de oomycetes (Jones, Bertazzoni, Turo, Syme & Hane, 2018). Sin embargo, en los hongos estas secuencias son mucho menos conservadas y su predicción se dificulta.…”
unclassified
“…Sin embargo, en los hongos estas secuencias son mucho menos conservadas y su predicción se dificulta. Los métodos ac-tuales de predicción génica generalmente son asistidos por una combinación de estrategias in silico y apoyados por alineamientos a partir de secuencias de transcritos obtenidos con RNA-seq (Joshi, Megha, Basu, Rahman & Kav, 2016;Jones et al, 2018).…”
unclassified