Designing carbon nanotubes (CNTs)-based materials are attracting great attention due to their fantastic properties and greater performance. Herein, a new CNTs network triggered by metal catalysts (e.g., Co, Ni, or Cu) is constructed on metal oxide (e.g., MnO) microparticles, giving rise to a high-performance Co-MnO@C-CNTs anode in lithium-ion batteries (LIBs). An extremely high capacity of 1050 mAh g −1 , extraordinary rate capacities over 10 A g −1 , and a long lifespan over 500 cycles are demonstrated. The great features of Co-MnO@C-CNTs anode are further confirmed in LIBs when the nickel-rich cathode (e.g., LiNi 0.8 Co 0.1 Mn 0.1 O 2 ) is used and charged at a high voltage over 4.5 V. A high-capacity retention of 71.5% can be maintained at 1 C over 150 cycles. The superior performance relates to the CNTs network, which not only acts as an "expressway network" for fast ion/electron transportation but also buffers structural variation. Moreover, the metal nanoparticles can also enhance the electrical conductivity and catalyze the (de-)lithiation of metal oxide, resulting in higher reversibility and long-term cyclability. This study opens a new avenue to prepare CNTs-based functional materials and also explores the potential applications of metal oxide-based anode for high-performance batteries.