2015
DOI: 10.5423/rpd.2015.21.4.280
|View full text |Cite
|
Sign up to set email alerts
|

Biological Control of Fusarium Stalk Rot of Maize Using Bacillus spp.

Abstract: Maize (Zea mays L.) is an economically important crop in worldwide. While the consumption of the maize is steadily increasing, the yield is decreasing due to continuous mono-cultivation and infection of soil-borne fungal pathogens such as Fusarium species. Recently, stalk rot disease in maize, caused by F. subglutinans and F. temperatum has been reported in Korea. In this study, we isolated bacterial isolates in rhizosphere soil of maize and subsequently tested for antagonistic activities against F. subglutina… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2016
2016
2023
2023

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(1 citation statement)
references
References 47 publications
0
1
0
Order By: Relevance
“…However, excessive and repeated use of chemical pesticides in agriculture have led to environmental pollution, reducing biodiversity, increased development of resistant pests and pathogens, and toxicity in animals including humans (Hassaan and El Nemr, 2020;Mesnage et al, 2014). The adoption of biological control is an important technique to reduce chemical pesticides, and genus Bacillus is among the most exploited microbial groups due to its high abundance, diversity, survival ability, and production of various bioactive compounds with direct and indirect antagonistic effects (Caulier et al, 2018;Han et al, 2015a;Saxena et al, 2020). Currently, several commercial Bacillus-based biological control agents are used in agriculture, including Bacillus amyloliquefaciens, Bacillus subtilis, B. thuringiensis, and Bacillus velezensis (Fira et al, 2018).…”
Section: Discussionmentioning
confidence: 99%
“…However, excessive and repeated use of chemical pesticides in agriculture have led to environmental pollution, reducing biodiversity, increased development of resistant pests and pathogens, and toxicity in animals including humans (Hassaan and El Nemr, 2020;Mesnage et al, 2014). The adoption of biological control is an important technique to reduce chemical pesticides, and genus Bacillus is among the most exploited microbial groups due to its high abundance, diversity, survival ability, and production of various bioactive compounds with direct and indirect antagonistic effects (Caulier et al, 2018;Han et al, 2015a;Saxena et al, 2020). Currently, several commercial Bacillus-based biological control agents are used in agriculture, including Bacillus amyloliquefaciens, Bacillus subtilis, B. thuringiensis, and Bacillus velezensis (Fira et al, 2018).…”
Section: Discussionmentioning
confidence: 99%