Pollution and increasing water demand, especially for agriculture, put severe stress on freshwater sources, and as a result, there is progressive deficit in the global water supply and severe water scarcity is projected in the coming decades. Discharges from domestic, industrial and agricultural activities are potential sources of water pollution, impacting human and environmental health. In the face of growing water scarcity and droughts, coupled with the increasing water demand for irrigation, integration of high water-volume and nutrient-rich industrial effluents, into the existing water management plans for agriculture, could play an important role in tackling the problem of water scarcity. However, there is a gap in knowledge about integration of industrial effluents to sewage treatments and the reuse potential of biologically treated mixed industrial and domestic wastewater in agriculture. This study, therefore, provides a critical review on biological treatment of industrial effluents, including petroleum, textile and pharmaceutical wastewater to better understand the capability of bioprocesses and conditions for efficient degradation of pollutants. The effectiveness of activated sludge-based processes, for the treatment of mixed industrial and domestic wastewater, was critically examined, and biomass acclimation plays a vital role in enhanced biodegradation performance. Finally, the reuse potential of mixed industrial and domestic wastewaters for crop irrigation was assessed by studying the reuse outcomes in different cases where industrial effluents were utilized for crop production. Management practices, such as cultivation of salt-and metal-tolerant crops, blending and dilution of industrial wastewater with freshwater and sewage, could make industrial effluents valuable for irrigation.