Insects, like other organisms, are susceptible to a variety of diseases caused by bacteria, viruses, fungi and protozoans, and these pathogens are exploited for biological control of insect pests through introductory or inundative applications. Microbial pathogens of insects are intensively investigated to develop environmental friendly pest management strategies in agriculture and forestry. In this paper, the scope for utilization of insect pathogens in pest management in the world and India is reviewed. The most successfully utilized insect pathogen is the bacterium, Bacillus thuringiensis (Bt) which is used extensively for management of certain lepidopteran pests. In India, mostly imported products of Bt kurstaki have been used, which are expensive and there is an urgent need to develop aggressive indigenous Bt strains against various pests. Baculoviruses comprising nuclear polyhedrosis virus (NPV) and granulosis virus (GV) have been successfully used as insect pathogens because of their high virulence and specificity. NPV and GV formulations are used for lepidopteran pests like Helicoverpa armigera (HaNPV) and Spodoptera litura (SlNPV) in India, besides Anticarsia gemmatalis NPV in Brazil, Lymanttria disper NPV, Orgyia pseudotsugata NPV in USA and GV of Pieris rapae in China. Lack of easy mass multiplication methods for the commercial production of baculoviruses calls for R&D to develop production in insect tissue cultures. Entomopathogenic fungi like Beauveria bassiana, B. brongniartii, Metarhizium anisopliae, M. anisopliae var. acridium, Lecanicillium spp., Hirsutella thompsonii, Nomuraea rileyi and Isaria fumosorosea are gaining importance in the crop pest control in recent years due to the simpler, easier and cheaper mass production techniques. Environmental humidity and temperature play an important role in the infection and sporulation of these fungi and as such they are highly suitable during cool and humid cropping seasons. Successful uses include M. anisopliae var. acridium for locust control in Africa, Australia and China, M. anisopliae in sugarcane spittle bug management in Brazil and pine moth (Dendrolimus spp.) control in China using B. bassiana. Since talc -based formulations of these fungi have limited shelf life of 3-4 months, alternative formulations with longer shelf life (12-18 months) have to be developed besides suitable oil based formulations for dry land agriculture. There is a scope to utilize the biodiversity of Entomophthorale group of fungi like Entomophthora, Zoophthora, Neozygites etc., which have potential for management of aphids, thrips and lepidopteran pests.